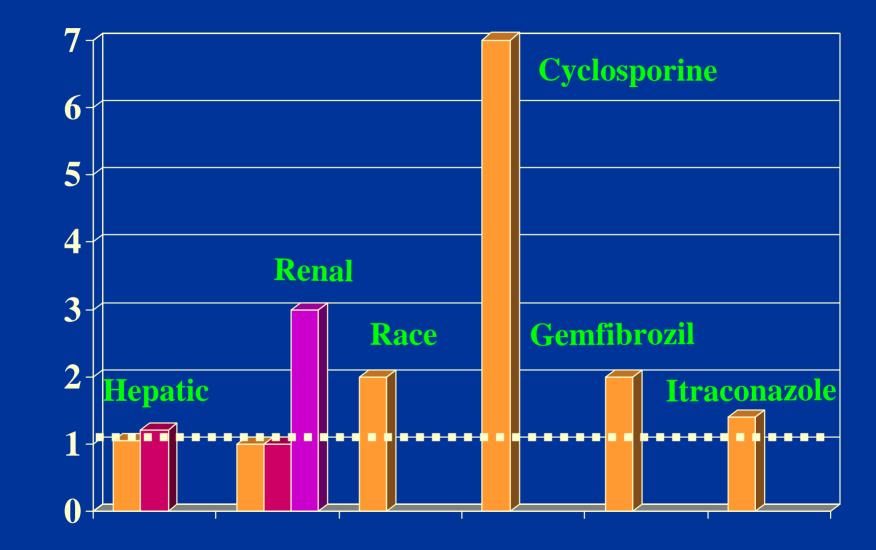
AAPS Transporter Workshop March 8, 2005, Parsippany, NJ

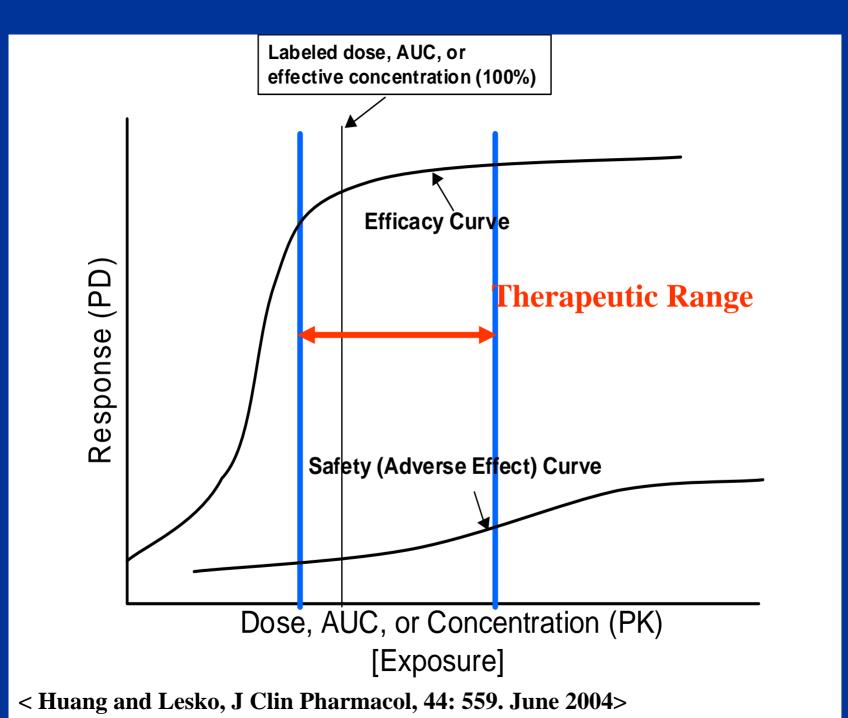
An FDA view of Drug Transporters & What Could be included in a Submission

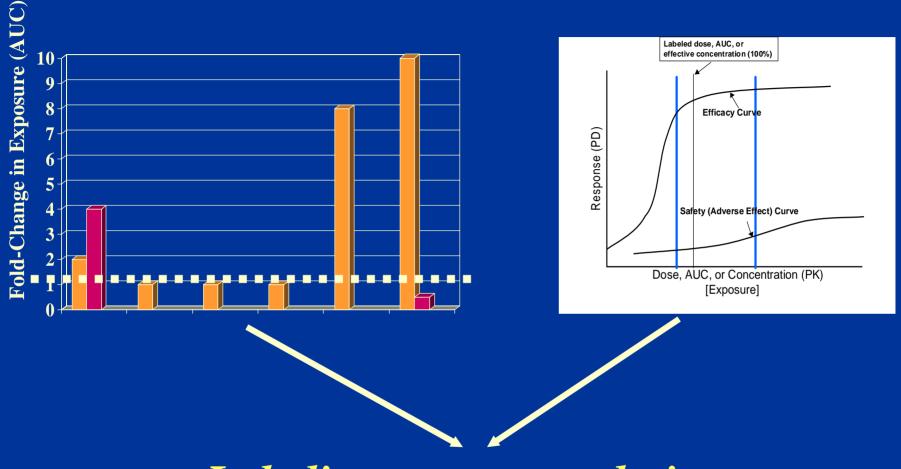
Shiew-Mei Huang, PhD, FCP
Deputy Office Director for Science
Office of Clinical Pharmacology and Biopharmaceutics
Center for Drug Evaluation and Research
Food & Drug Administration

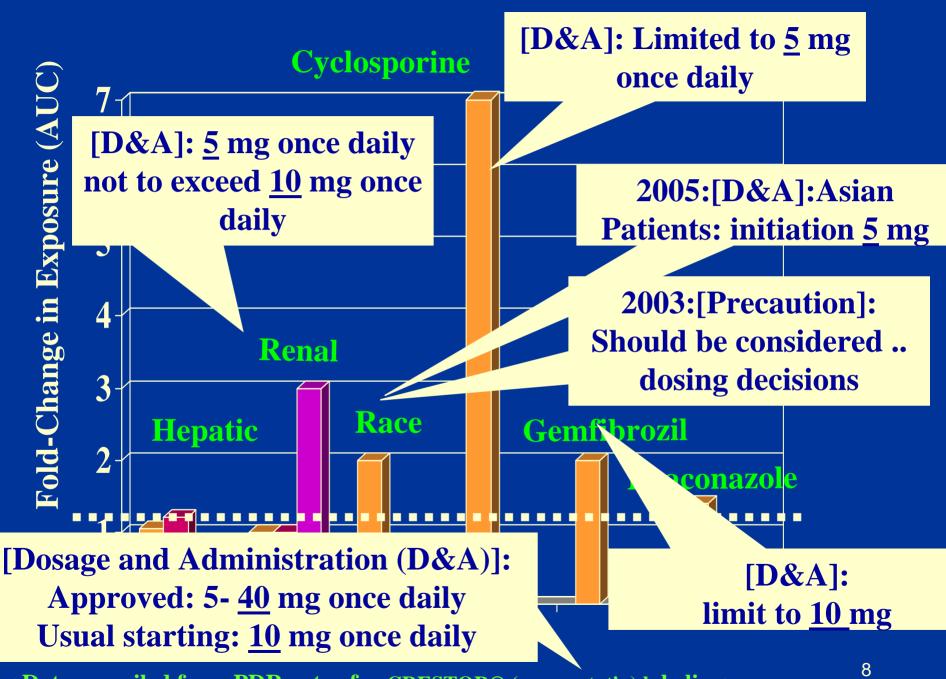
One Aspect of Clinical Pharmacology and Biopharmaceutics Review


Age
Race
Gender
Genetics
Organ dysfunctions
Disease states
Pregnancy/lactation

Smoking
Diet
Interactions
(drugs,
Dietary
supplements
Juices, etc)
Others


Dosage adjustment for specific populations with <u>extrinsic</u> and intrinsic factors


Evaluation of systemic exposure changes in specific populations


Establishment of exposure - response relationship

Labeling recommendations

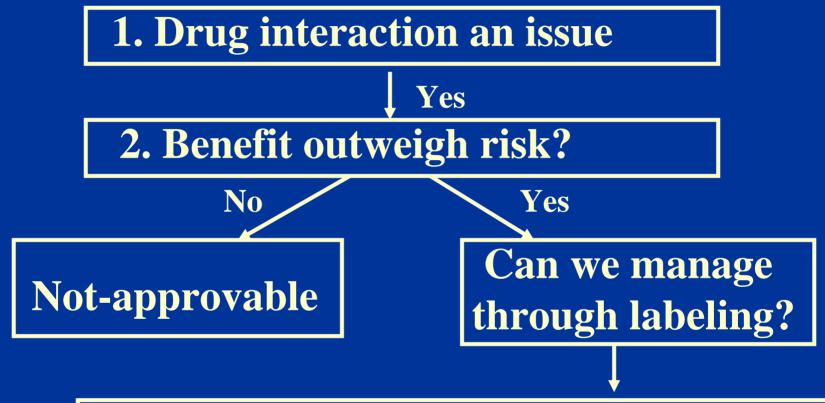
Other considerations

Evaluation of drug interactions critical to risk/benefit assessment

Recent US Market Withdrawal (1998-2003) **

Withdrawn	Approval	Drug name	Use	Risk
1998	1997	Mibefradil	High blood pressure/ Chronic stable angina	Drug-drug interactions Torsades de Pointes
1998	1997	Bromfenac	NSAID	Acute liver failure
1998	1985	Terfenadine	Antihistamine	Torsades de Pointes Drug-drug interactions
1999	1988	Astemizole	Antihistamine	Torsades de Pointes Drug-drug interactions
1999	1997	Grepafloxacin	Antibiotics	Torsades de Pointes
2000	2000	Alosetron*	Irritable bowel syndrome in women	Ischemic colitis; complications of constipation
2000	1993	Cisapride	Heartburn	Torsades de Pointes Drug-drug interactions
2000	1997	Troglitazone	Diabetes	Acute liver failure
2001	1997	Cerivastatin	Cholesterol lowering	Rhabdomyolysis Drug-drug interactions
2001	1999	Rapacuronium	Anesthesia	Bronchospasm

^{*}Reintroduced in 2001; ** rofecoxib (Vioxx) withdrawn in Sept 2004; natalizumab (Tysabri) withdrawn in Feb 2005


"...drug interactions represent 3-5% of preventable ADRs and are an important contributor to ER visits and hospital admissions."

< JAMA 1995;274(1):35-43>

"...elderly patients with digoxin toxicity were 12 times more likely to have been treated with clarithromycin"

< JAMA 2003;289 (13):1652>

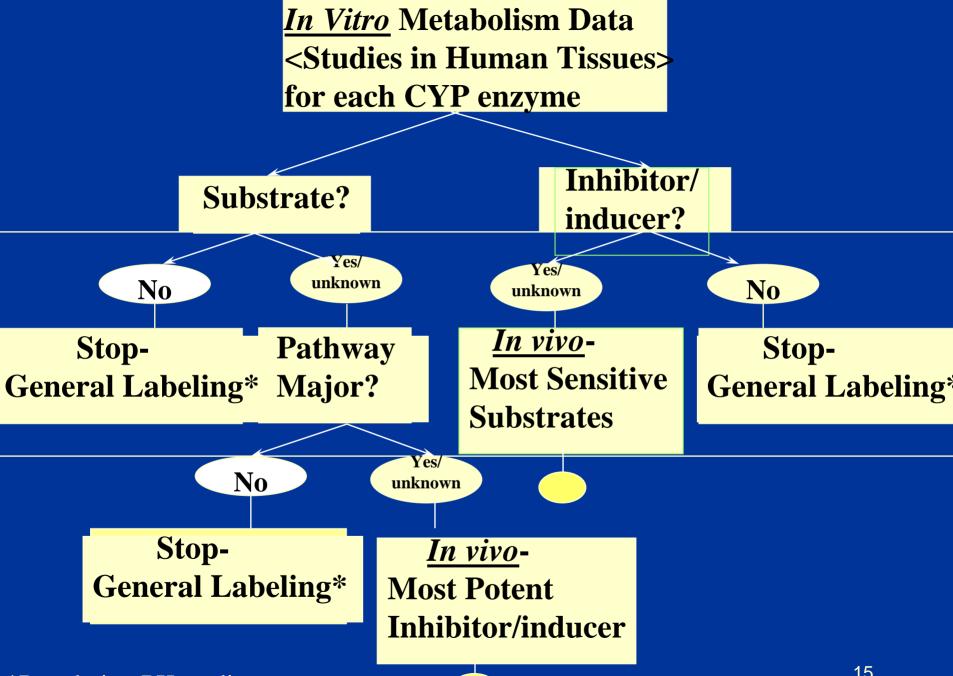
What lessons have we learned? Questions to ask when review NDA/ Post-marketing data

- Assign levels of risk
- Education for healthcare providers & patients

Concept Paper

Drug Interaction Studies — Study Design, Data Analysis, and Implications for Dosing and Labeling

FDA Advisory Committee for pharmaceutical sciences and Clinical Pharmacology Subcommittee meeting. Issues drug interaction concept paper. Rockville, MD. November 3, 2004;


http://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4079b1.htm;

<u> http://www.fda.gov/ohrms/dockets/ac/04/slides/2004-4079s1.htm</u>

http://www.fda.gov/ohrms/dockets/ac/04/transcripts/2004-4079T1.htm

Key Messages:

- 1. Metabolism, drug-interaction info key to benefit/risk assessment
- 2. Integrated approach may reduce number of unnecessary studies and optimize knowledge
- 3. Study design/data analysis key to important information for proper labeling
- 4. Need to establish "Therapeutic equivalence boundaries"
- 5. Labeling language needs to be useful and consistent

Evaluation of metabolic interactions

Inhibition

CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A, CYP2D6

Induction

CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A

Metabolic Profiling

CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP3A, CYP2D6

Other CYPs/Phase 2 metabolism

Evaluation of inhibition

"The likelihood of an in vivo interaction is projected based on the [I]/Ki ratio where [I] represents the mean steady-state Cmax value for total drug (bound plus unbound) following administration of the highest proposed clinical dose. As the ratio increases, the likelihood of an interaction increases."

Prediction of clinical relevance of competitive CYP inhibition

<u>I/Ki</u> <u>Prediction</u>

I/Ki > 1 Likely

1> I/Ki> 0.1 Possible

0.1> I/Ki Remote

An estimated I/Ki ratio of greater than 0.1 is considered positive and a follow-up in vivo evaluation is recommended,

Evaluation of inhibition

Design the in vivo evaluation based on in vitro data

- Initial prediction based on I/Ki
- rank order and evaluate the more potent ones, smaller Kis, first or largest I/Ki

		NME (Cmax 2uM)		
		IC50	Ki	I/Ki
	CYP1A2	50 uM	20 uM	0.1
	CYP2C8	>100 uM		
	CYP2C9	>100 uM		
	CYP2C19	>100 uM		
Evaluate	CYP2D6	>100 uM	/	
in vivo	CYP3A4	7uM	2 uM	1

CYP	Substrate	Inhibitor In vivo	Inducer	
1A2	theophylline, caffeine	fluvoxamine probes	smoking ⁽³⁾ _{NEW}	
2B6	efavirenz	probes	rifampin	
2C8	repaglinide, rosiglitazone	gemfibrozil	rifampin	
2C9	warfarin, tolbutamide	fluconazole, amiodarone (use of PM subjects) (4) NEW!	rifampin	
2C19	omeprazole, esoprazole, lansoprazole, pantoprazole	omeprazole, fluvoxamine, moclobemide (use of PM subjects) (4) NEW!	rifampin	
2D6	desipramine, atomoxetine dextromethorphan	paroxetine, quinidine, (use of PM subjects) (4) NEW!	None identified	
2E1	chlorzoxazone	disulfirum	ethanol	
3A4/ 3A5	midazolam, buspirone, felodipine, simvastatin, lovastatin, eletriptan, sildenafil, simvastatin, triazolam, vardenafil	atanazavir, clarithromycin, indinavir, itraconazole, ketoconazole, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, voriconazole	rifampin, carbamazepine	
* To be	* To be posted on internet; updated regularly			

Do we have a similar system well developed for evaluation of transporter-based interactions?

Table. Drug interactions due to inhibition of transport proteins

Substrate	Inhibitor	Transporter
digoxin	quinidine, verapamil, itraconazole	P-gp; OATP
fexofenadine	ketoconazole, erythromycin, azithromycin	P-gp; OATP
talinolol	verapamil	P-gp
loperamide	quinidine	P-gp
dofetilide procainamide	cimetidine	OCT;OAT; OATP
levofloxacine		
penicillins	probenecid	OAT
ACE inhibitors		
Antiviral drugs		
paclitaxel	valspodar	P-gp

P-gp: p-glycoprotein; OAT: organic anion transporter; OCT: organic cation transporter: OATP: organic anion transport protein

FDA Advisory Committee for Pharmaceutical Sciences - Clinical Pharmacology Subcommittee meeting: Drug interaction concept paper Rockville, MD November 3, 2004

Questions associated with *inhibition* of transporters (1)

If a NME IS an <u>inhibitor</u> of <u>P-gp</u> in vitro, then there IS a need to conduct an in vivo study using digoxin or other suitable substrates. Yes or No

If a NME IS a <u>substrate</u> for <u>P-gp</u> in vitro AND a CYP3A4 substrate based on either in vitro and/or in vivo data, then a clinical study with a P-gp- and CYP3A4-inhibitor (e.g., ritonavir) should be conducted.

Yes or No

Questions associated with *inhibition* of transporters (2)

If a NME IS a <u>substrate</u> for <u>P-gp</u> in vitro AND NOT a CYP3A4 substrate based on either in vitro and/or in vivo data, then a clinical study with a P-gp-inhibitor (e.g., cyclosporine, verapamil) should be conducted.

Yes or No

Does the current evidence support recommendations that drug-drug interactions based on <u>OATP and/or MRP</u> be recommended for clinical study during drug development?

Yes or No

P-gp transporter based interaction (1)

If a NME is an inhibitor of P-gp in vitro, in vivo study using digoxin may be appropriate

P-gp transporter based interaction (2)

If a NME is a substrate for P-gp and CYP3A

-> a clinical study with a multi- inhibitor

(e.g., ritonavir) may be appropriate

[Ritonavir affects multiple pathways]

P-gp transporter based interaction (3)

If a NME is a substrate for P-gp and NOT CYP3A4

-> a clinical study with a P-gp- inhibitor

(e.g., cyclosporine, verapamil) may be appropriate

No general agreement on these approaches

- In vitro (pre- clinical) methods not standardized/readily available
- Quantitative in vitro prediction of in vivo relevance not possible
- In vivo data not generalizable

P-gp -

- Digoxin a suitable probe substrate
- No good P-gp inhibitors available
 - pitfalls in using ritonavir, verapamil, cyclosporine

Other transporters

- in vitro tools far less standardized/available
- Few defined substrates/inhibitors available
- data not generalizable to broader clinical practice

"Class" labeling of drugs that are <u>substrates</u> of CYP3A

Labeling

If a drug has been determined to be a sensitive CYP3A substrate or a CYP3A substrate with a narrow therapeutic range, it does not need to be tested with all strong or moderate inhibitors of CYP3A to warn about an interaction with "strong" or "moderate" CYP3A inhibitors

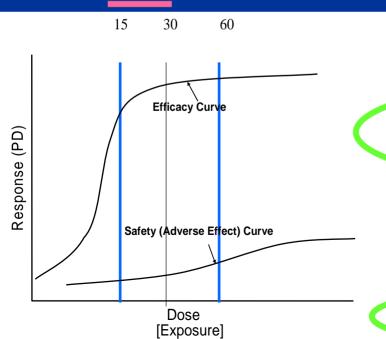
FDA Advisory Committee for pharmaceutical sciences and Clinical Pharmacology Subcommittee meeting. Issues drug interaction concept paper. Rockville, MD. November 3, 2004; http://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4079b1.htm; http://www.fda.gov/ohrms/dockets/ac/04/slides/2004-4079s1.htm; Huang, S-M, presentation

Examples of strong and moderate CYP3A inhibitors

Strong CYP3A inhibitors atanazavir clarithromycin indinavir itraconazole ketoconazole nefazodone nelfinavir ritonavir saquinavir telithromycin voriconazole

amprenavir aprepitant diltiazem erythromycin fluconazole fosaprenavir grapefruit juice(a) verapamil

Moderate CYP3A inhibitors


A "strong inhibitor" is one that caused a > 5-fold increase in the plasma AUC values of CYP3A substrates (not limited to midazolam) in clinical evaluations

A "moderate inhibitor" is one that caused $a \ge 2$ - but < 5-fold increase in the AUC values of sensitive CYP3A substrates when the inhibitor was given at the highest approved dose and the shortest dosing interval in clinical evaluations

Labeling example - CYP3A substrate

Drug with	<u>AUC</u>	Cmax
Ketoconazole	8x	4x
Erythromycin	6x	3x
Verapamil	5x	3x

[if approved]

Do not take with strong CYP3A inhibitors....

Ketoconazole

itraconazole, ritonavir, nelfinavir, nefazodone, clarithromycin.

Use lower dose with moderate CYP3A inhibitors...Not studied erythromycin, verapamil diltiazem... 33

Do we have sufficient data for "class" labeling of drugs that are substrates of transporters?

"Class" labeling of drugs that are inhibitors of CYP3A

Labeling

If a drug has been determined to be a strong inhibitor of CYP3A, it does not need to be tested with all CYP3A substrates to warn about an interaction with "sensitive CYP3A substrates" and "CYP3A substrates with narrow therapeutic range".

Examples of sensitive CYP3A substrates or CYP3A substrates with NTR

Sensitive
CYP3A Substrates With
Narrow therapeutic range

budesonide, buspirone, eletriptan, felodipine, imatinab, lovastatin, midazolam, saquinavir, sildenafil, simvastatin, triazolam, vardenafil

Alfentanil, astemizole(a), cisapride(a), cyclosporine, diergotamine, ergotamine, fentanyl, pimozide, quinidine, sirolimus, tacrolimus, terfenadine(a)

"sensitive CYP3A substrates" refer to drugs whose plasma AUC values are <u>increased 5-fold or</u> more when co-administered with CYP3A inhibitors

"CYP3A substrates with narrow therapeutic range" refer to drugs whose exposure-response data are such that increases in their exposure levels by the concomitant use of CYP3A inhibitors may lead to serious safety concerns (e.g., Torsades de Pointes);

(a) not available in US

Labeling example- CYP3A inhibitor

Telithromycin Midazolam

AUC

6X

- Telithromycin is a strong inhibitor of the cytochrome P450 3A4 system
- Use of simvastatin, lovastatin, or atorvastatin concomitantly with Not studied KETEK should be avoided
- The use of KETEK is contraindicated with cisapride, pimozide

Do we have sufficient data for "class" labeling of drugs that are inhibitors of transporters?

Labeling examples

Fexofenadine

These studies indicate that ketoconazole or erythromycin co-administration enhances fexofenadine gastrointestinal absorption. This observed increase in the bioavailability of fexofenadine may be due to transport-related effects, such as p-glycoprotein. In vivo animal studies also suggest that in addition to enhancing absorption, ketoconazole decreases fexofenadine gastrointestinal secretion, while erythromycin may also decrease biliary excretion.

Fexofenadine (2)

Interactions with Fruit Juices

Fruit juices such as grapefruit, orange and apple may reduce the bioavailability and exposure of fexofenadine. This is based on the results from 3 clinical studies using histamine induced skin wheals and flares coupled with population pharmacokinetic analysis. Therefore, to maximize the effects of fexofenadine, it is recommended that ALLEGRA-D 24 HOUR should be taken with water

Eplerenone

Eplerenone is not a substrate or an inhibitor of *P-glycoprotein* at clinically relevant doses

No clinically significant drug-drug pharmacokinetic interactions were observed when eplerenone was administered with <u>digoxin</u>

Levonorgestrel and Ethinyl Estradiol

Herbal products containing St. John's wort (Hypericum perforatum) may induce hepatic enzymes (cytochrome P 450) and p-glycoprotein transporter and may reduce the effectiveness of contraceptive steroids. This may also result in breakthrough bleeding.

Pramipexole

Probenecid: Probenecid, a known inhibitor of renal tubular secretion of organic acids via the anionic transporter, did not noticeably influence pramipexole pharmacokinetics (N=12).

Dofetilide

Dofetilide is eliminated in the kidney by cationic secretion. Inhibitors of renal cationic secretion are contraindicated with TIKOSYN. In addition, drugs that are actively secreted via this route (e.g., triamterene, metformin and amiloride) should be co-administered with care as they might increase dofetilide levels.

Summary

P-gp- based interactions

- Most well developed
- Information increasingly included in labeling
- To determine when to evaluate in vivo: need agreed-upon criteria to evaluate in vitro (preclinical) data
- Digoxin a clinically relevant substrate
- Need to define specific inhibitors

Other transporter- based interactions

- In vitro methodologies being developed
- Some information has been included in labeling
- Need continued research; need probe substrates/inhibitors
- Short-term recommendations may be drugor "therapeutic class-" specific

Other considerations-Interplay with other intrinsic and extrinsic factors

Genotypes and Drug Interactions

Substrate (enzyme)	Inhibitor or inducer	Outcome (changes in plasma AUC or concentrations of substrates)
Atomoxetine (CYP2D6)	fluoxetine, paroxetine	AUC increase 6-8 fold in EM; no change in PM expected
Metoprolol (CYP2D6)	diphenhydramine	Higher inhibition in EM vs. PM (fold vs. fold)
Tamoxifen (CYP2D6)	paroxetine	Greater reduction in plasma levels of endoxifen (active metabolite of tamoxifen formed via CYP2D6) in homozygous EM as compared to patients with at least one variant allele
Diazepam (CYP2C19)	omeprazole	No inhibition in PM
Omeprazole (CYP2C19)	fluvoxamine	AUC increased 3-6 fold in EM; no changes in PM
Omeprazole (CYP2C19)	Gingko Biloba	Higher induction in EM

< Huang, S-M, Lesko, LJ, "Application of Pharmacogenomics in Clinical Pharmacology" - in Part I: Molecular Medicine, Correlation between genes, diseases and biopharmaceuticals, in "Modern Biopharmaceuticals- Design, Development and Optimization", Ed., Jorg Knablein and RH Muller, Wiley, VCH (in press) >

References

- Guidance for industry: In vivo metabolism/drug interactions: Study design, data analysis and recommendation for dosing and labeling (Issued 11/24/1999, Posted 11/24/1999);
 - http://www.fda.gov/cder/guidance/index.htm; http://www.fda.gov/cder/guidance/2635fnl.pdf
- Tucker, Houston and Huang, Clin Pharm Ther August 2001; 70(2):103
- Bjornsson, Callaghan, Einolf, et al, J Clin Pharmacol, May 2003; 43(5):443
- Yuan, Madani, Wei, Reynolds, Huang, Drug Metab Disp, December 2002; 30(12) 1311
- Labeling guideline. Federal Register 65[247], 81082-81131. December 22, 2000.
- FDA Advisory Committee for pharmaceutical sciences and Clinical Pharmacology Subcommittee meeting. Issues and challenges in the evaluation and labeling of drug interaction potentials of NME Rockville, MD. April 23, 2003; http://www.fda.gov/ohrms/dockets/ac/03/transcripts/3947T2.htm
- FDA Advisory Committee for pharmaceutical sciences and Clinical Pharmacology Subcommittee meeting. Issues drug interaction concept paper. Rockville, MD. November 2004;

http://www.fda.gov/ohrms/dockets/ac/04/briefing/2004-4079b1.htm;

http://www.fda.gov/ohrms/dockets/ac/04/slides/2004-4079s1.htm

- Huang, S-M, Lesko, L, J Clin Pharmacology, June 2004
- Huang, S-M, Hall, S, Watkins, P, et al, Clin Pharmacol Ther, Jan 2004
- FDA Food and Drug Administration Concept Paper: Premarketing Risk Assessment. March 3, 2003, http://www.fda.gov/cder/meeting/riskManagel.htm;

http://www.fda.gov/cder/meeting/riskManageII.htm;

http://www.fda.gov/cder/meeting/riskManageIII.htm

Huang, S-M, Drug-drug interactions, in Applications of Pharmacokinetic Principles in Drug Development, Ed. Rajesh Krishina, Kluwer Academic/Plenum Publishers, 2003

Drug Interactions working group

Sophia Abraham Sang Chung **Shiew-Mei Huang** Patrick Marroum Nam Atik Rahman Lei K Zhang

Sayed Al-Habet Raman Baweja Philip Colangelo Paul Hepp Ron Kavanagh Srikanth Nallani Wei Qiu **Kellie Reynolds** Jenny H Zheng

Lawrence Lesko **Xiaoxiong Wei**

Jerry Collins David M Green Hon Sum Ko Robert Temple

Soloman Sobel **David Frucht** Toni Stifano Janet Norden

John Strong